
A Maths CH 1 to 9

_/74 marks

1. (a) On the axes below, sketch the graph of $y = 3\cos 2x - 1$, for $0^\circ \le x^\circ \le 360^\circ$.

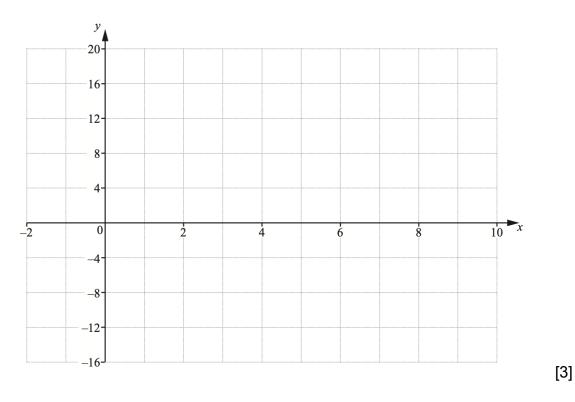
[3]

[1]

[1]

(b) Given that y = 4sin 6x, write down

(i) the amplitude of y,


(ii) the period of y.

The Maths Society

2. (i) Write $x^2 - 9x + 8$ in the form $(x - p)^2 - q$ where p and q are constants.

(ii) Hence write down the coordinates of the minimum point on the curve $y = x^2 - 9x + 8$.

(iii) On the axes below, sketch the graph of $y = |x^2 - 9x + 8|$, showing the coordinates of the points where the curve meets the coordinate axes.

(iv) Write down the value of *k* for which $k = |x^2 - 9x + 8|$ has exactly 3 solutions.

[1]

[1]

[2]

3. (a)
$$f(x) = 3 - \cos 2x$$
 for $0 \le x \le \frac{\pi}{2}$.

i. Write down the range of f.

[2]

ii. Find the exact value of $f^{-1}(2.5)$.

[3]

(b) $g(x) = 3 - x^2$ for $x \in R$.

Find the exact solutions of $g^2(x) = -6$

[4]

4. Solve the equation |5x - 3| = -3x + 13.

[3]

5. Solve the simultaneous equations

$$\log_2(x+2y)=3,$$

$$\log_2 3x - \log_2 y = 1.$$

[5]

- 6. Variables *x* and *y* are such that when y^2 is plotted against e^{2x} a straight line is obtained which passes through the points (1.5, 5.5) and (3.7, 12.1). Find
 - a. *y* in terms of e^{2x} ,

[3]

b. the value of y when x = 3,

[1]

c. the value of x when y = 50.

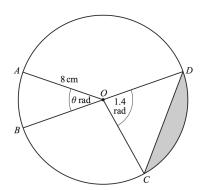
[3]

7. (a) Solve $2\sin(x + \frac{\pi}{4}) = \sqrt{3}$ for $0 < x < \pi$ radians.

[3]

(b) Solve 3sec y = 4 cosec y for $0^{\circ} < y < 360^{\circ}$.

[3]


(c) Solve 7 cot z - tan z = 2cosec z for $0^{\circ} < z < 360^{\circ}$.

[6]

8. The line y = 2x + 5 intersects the curve y + xy = 5 at the points *A* and *B*. Find the coordinates of the point where the perpendicular bisector of the line *AB* intersects the line y = x.

9. The remainder obtained when the polynomial $p(x) = x^3 + ax^2 - 3x + b$ is divided by x + 3 is twice the remainder obtained when p(x) is divided by x - 2. Given also that p(x) is divisible by x + 1, find the value of *a* and of *b*.

[5]

The diagram shows a circle with centre *O* and radius 8 cm. The points *A*, *B*, *C* and *D* lie on the circumference of the circle. Angle $AOB = \theta$ radians and angle COD = 1.4 radians. The area of sector AOB is 20 cm^2

- a. Find angle θ .
- b. Find the length of the arc *AB*.

c. Find the area of the shaded segment.

[3]

10.

[2]

[2]

12. Determine the set of values of k for which the equation

 $(3 - 2k)x^{2} + (2k - 3)x + 1 = 0$ has no real roots.

•

[5]